All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,关于半二面体群边传递的图Γ的完全
类。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,关于半二面体群边传递的图Γ的完全
类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反射的定义: 反射是欧几里空间的对合等距同构,它的不动点集合是余维度为 1 的仿射子空间。
声明:以上例句、词类均由互联网资源自动生成,部
未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,获得了关于半二面传递的图Γ的完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反射的定义: 反射是欧几里得的对合等距同构,它的不动点集合是余维度为 1 的仿射子
。
明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,获得了二面体群边传递的图Γ的完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反射的定义: 反射是欧几里得空间的对合等距同构,它的不动点集合是余维度为 1 的仿射子空间。
声明:以、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,获得了二面体群边传递的图Γ的完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反射的定义: 反射是欧几里得空间的对合等距同构,它的不动点集合是余维度为 1 的仿射子空间。
声明:以、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,获得了关于半二面体群边传递的图Γ的完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形射的定义:
射是欧几里得空间的对
同构,它的不动点集
是余维度为 1 的仿射子空间。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,获得了关于半二面体群的图Γ的完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反的定义: 反
是欧几里得
间的对合等距同构,它的不动点集合是余维度为 1 的仿
间。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,获得了关于半二面体群边传递的图Γ的完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些许我们形式化反射的定义: 反射是欧几里得空间的对合等距同构,它的
集合是余维度为 1 的仿射子空间。
声明:以上例句、词性分类均由互联网资源自生成,部分未经过人工审核,其表达内容亦
代表本软件的
;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,获得了关于半群边传递的图Γ的完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反射的定义: 反射是欧几里得空间的对合等距同构,它的不动点集合是余维度为 1 的仿射子空间。
:
上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图自同构理论,获得了关于半二面体群边传递
图Γ
完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察们形式化反射
定义: 反射是欧几里得空间
对合等距同构,
动点集合是余维度为 1
仿射子空间。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦代表本软件
观点;若发现问题,欢迎向
们指正。