All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,获得了关于半二面体群边传递的图Γ的完全分类。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,获得了关于半二面体群边传递的图Γ的完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反射的定义: 反射是欧几里得空间的对合等距同构,它的不动点集合是余维度为 1 的仿射子空间。
声明:以上例句、词性分类均由互联网资源自动生成,部分未工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,获得了关于半二面传递的图Γ的完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反射的定义: 反射是欧几里得的对合等距同构,它的不动点集合是余维度为 1 的仿射子
。
明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,关于半二面体群边传递的图Γ的完全
类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反射的定义: 反射是欧几里空间的对合等距同构,它的不动点集合是余维度为 1 的仿射子空间。
声明:以上例句、词类均由互联网资源自动生成,部
未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图构理论,获得了关于半二面体群边传递
图Γ
完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反射定义: 反射是欧几里得空间
对合等距
构,它
不动点集合是余维度为 1
仿射子空间。
声明:以上例句、词性分类均由资源
动生成,部分未经过人工审核,其表达内容亦不代表本软件
观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,获得了关于半二面体群边传递的图Γ的完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反射的定义: 反射是欧几里得空间的对合等距同构,它的不动点集合是余维度为 1 的仿射子空间。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自理论,获得了关于半二面体群边传递的图Γ的完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许式化反射的定义: 反射是欧几里得空间的对合等距
,
的不动点集合是余维度为 1 的仿射子空间。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,获得了关于半二面体群边传递的图Γ的完全类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反射的定义: 反射是欧几里得空间的对合等距同构,它的不动点集合是余维度为 1 的仿射子空间。
声明:以上例句、词性类均由互联网资源自动生成,部
过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,获得了关于半群边传递的图Γ的完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反射的定义: 反射是欧几里得空间的对合等距同构,它的不动点集合是余维度为 1 的仿射子空间。
:
上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理,
了关于半二面体群边传递的图Γ的完全
。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反射的定义: 反射是欧几里空间的对合等距同构,它的不动点集合是余维度为 1 的仿射子空间。
声明:以上例句、词均由互联网资源自动生成,部
未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用自同构理论,获得了关于半二面体群边传递
Γ
全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反射定义: 反射是欧几里得空间
对合等距同构,它
不动点集合是余维
1
仿射子空间。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件观点;若发现问题,欢迎向我们指正。