We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心是
射
证明,也就是透过在两个集合间建立
个
射(
数)来证明它们
元素个数相等。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心是
射
证明,也就是透过在两个集合间建立
个
射(
数)来证明它们
元素个数相等。
声明:以上例句、词性分类均由互联网资源自动生,部分未经过人工审核,其表达内容亦不代表本软件
观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是对射的证明,也就是透过在两个集合间建立一个对射(一对一且的函数)来证明它们的元素个数相等。
声明:以上、词性分类均由互联网资源自
,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心是对射
,也就是透过在两个集合间建立一个对射(一对一且
成
函数)来
它们
元素个数相等。
声:以上例
、词
分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件
观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是对的证明,也就是透
在两个集合间建立一个对
(一对一且
成的函数)来证明它们的元素个数相等。
声明:以上例句、词性分类均由互联网资源自动生成,部分未工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
要关心的是对射的证明,也就是透过在两个集合间建立一个对射(一对一且
成的函数)来证明它
的元素个数相等。
声明:以上例句、词性分类均由互联网动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向
指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心是
证明,也就是透过在两个集合间建立一个
(一
一且
成
函数)来证明它们
元素个数相等。
声明:以上例句、词均由互联网资源自动生成,部
未经过人工审核,其表达内容亦不代表本软件
观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主的是对射的证明,也就是透过在两个集合间建立一个对射(一对一且
成的函数)来证明它们的元素个数相等。
声明:以上例句、词性分类均由资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要是对射
证明,也就是透过在两个集合间建立一个对射(一对一且
成
函数)来证明它们
元素个数相等。
声明:以上例句、词性分类均网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件
观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心是
射
证明,也就是透过在两个集合间建立
个
射(
数)来证明它们
元素个数相等。
声明:以上例句、词性分类均由互联网资源自动生,部分未经过人工审核,其表达内容亦不代表本软件
观点;若发现问题,欢迎向我们指正。