According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根双调和方程的特点并借助于MATHEMATICA软件,得到了应力函数双调和方程的多项式解
。
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根双调和方程的特点并借助于MATHEMATICA软件,得到了应力函数双调和方程的多项式解
。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其容亦不代
本软件的观点;若发现问题,欢迎向我们指正。
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根据二维双调和方程的特点并借助于MATHEMATICA软件,得到函数双调和方程的多项式解
。
声明:以上例句、词性分类均由资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根据二维双调的特点并借助于MATHEMATICA软件,得到了应力函数双调
的多项式解
。
声明:以上例、词
分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根据二维双调和方程特点并借助于MATHEMATICA软件,得到了应力函数双调和方程
式解
。
声明:句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件
观点;若发现问题,欢迎向我们指正。
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根据二维双调和方程的特点并借助于MATHEMATICA软件,得到了应力函数双调和方程的多项式解。
声明:以上、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容
表本软件的观点;若发现问题,欢迎向我们指正。
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根据二维双调和方程的特并借助于MATHEMATICA软件,得到了应力函数双调和方程的多项式解
。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观;
现问题,欢迎向我们指正。
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根据二维方程的特点并借助于MATHEMATICA软件,得到了应力函数
方程的多项式解
。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工,
表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根据二维双调和方程并借助于MATHEMATICA软件,得到了应力函数双调和方程
多项式解
。
声明:以上例句、词性分类均由互联网资源自动生成,部分人工审核,其表达内容亦不代表本软件
观
;若发现问题,欢迎向我们指正。
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根据二维双调和方程的特并借助于MATHEMATICA软件,得到了应力函数双调和方程的多项式解
。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的;
发现问题,欢迎向我们指正。
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根据二维双调和方特点并借助于MATHEMATICA软件,得到了应力函数双调和方
项式解
。
声明:以、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件
观点;若发现问题,欢迎向我们指正。