All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,获得了关于体群边传递的图Γ的完全分类。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,获得了关于体群边传递的图Γ的完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反射的定义: 反射是欧几里得空间的对合等距同构,它的不动点集合是余维度为 1 的仿射子空间。
声:
例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,获得了关于半二面体群边传递的图Γ的完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反射的定义: 反射是欧几里得空间的对合等距同构,它的不动点集合是余维度为 1 的仿射子空间。
声明:以上例句、词性分类均由互联网资源自动生成,部分未工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,获得了关于半二面体群边传递的图Γ的完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反射的定义: 反射是欧几里得空间的对合等距同构,它的不点集合是余维度为 1 的仿射子空间。
声明:以上、词性分类均由互联网资源自
,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,获得半二面体群边传递的图Γ的完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反射的定义: 反射是欧几里得空间的对合等距同构,它的不动点集合是余维度为 1 的仿射子空间。
声明:以上、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,获得了关于半二面体群边传递的图Γ的完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形射的定义:
射是欧几里得空间的对
同构,它的不动点集
是余维度为 1 的仿射子空间。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图构理论,获得了关于半二面体群边传递
图Γ
完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反射定义: 反射是欧几里得空间
对合等距
构,它
不动点集合是余维度为 1
仿射子空间。
声明:以上例句、词性分类均由资源
动生成,部分未经过人工审核,其表达内容亦不代表本软件
观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,获得了关于半二边传递的图Γ的完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反射的定义: 反射是欧几里得空的对合等距同构,它的不动点集合是余维度为 1 的仿射子空
。
:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图的自同构理论,获得了关于半二面体群边传递的图Γ的完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
察允许我们形式化反射的定义: 反射是欧几里得空间的对
等距同构,它的不动
是余维度为 1 的仿射子空间。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的;若发现问题,欢迎向我们指正。
All graphs are finite simple undirected graph with no isolated vertices in this paper. It is completed the classification of graphs on which a semidihedral group acts edge-transitively.
运用图自同构理论,获得了关于半二面体群边传递
图Γ
完全分类。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观我们形式化反射
定义: 反射是欧几里得空间
对合等距同构,它
点集合是余维度为 1
仿射子空间。
声明:以上例句、词性分类均由互联网资源自生成,部分未经过人工审核,其表达内容亦
代表本软件
观点;若发现问题,欢迎向我们指正。