We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的对射的证明,也就
在两个集合间建立一个对射(一对一且映成的
数)来证明它们的元素个数相等。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的对射的证明,也就
在两个集合间建立一个对射(一对一且映成的
数)来证明它们的元素个数相等。
声明:以上例句、词类均由互联网资源自动生成,部
未经
人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心是对
明,也就是透过在两个集合间建立一个对
(一对一且映成
数)来
明它们
元素个数相等。
声明:以上例句、词性分类均由资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件
观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是对射的,也就是透过在两个集合间建立一个对射(一对一
的
数)
它们的元素个数相等。
声:以上例句、词性分类均由互联网资源自动生
,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是对射的证明,也就是透过在两个集合间建立一个对射(一对一且映成的数)来证明它们的元素个数相等。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审,
达内容亦不代
本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要是对射
证明,也就是透过在两个集合间建立一个对射(一对一且映成
数)来证明它们
元素个数相等。
声明:以上例句、词性分类均由互联网资源成,部分未经过人工审核,其表达内容亦不代表本软件
观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的的证明,也就
透过在两个集合间建立一个
(一
一且映成的
数)来证明它们的元素个数相等。
声明:以上例句、词性分类均由互联自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是射的证明,也就是透过在两
集合间建立
射(
且映成的
)来证明它们的元
相等。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是对射的证明,也就是透在两个集合间建立一个对射(一对一且映成的
数)来证明它们的元素个数相等。
声明:以上、词性分类均由互联网资源自动生成,部分未
工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心是对射
明,也就是透过在两个集合间建立一个对射(一对一且
)
明它们
元素个
相等。
声明:以上例句、词性分类均由互联网资源自动生,部分未经过人工审核,其表达内容亦不代表本软件
观点;若发现问题,欢迎向我们指正。